A description of developer behaviour.
e.g. "Uses camelCase for variable
names"

Example:

Some cards give examples to help clarify the described
behaviour. These are not intended to be comprehensive; base

your response on ANY symptoms you can think of which
manifest the behaviour

Gives each variable the smallest
possible lifetime and scope

Example:

Declares a local object right before its first usage

Writes functions which retain state
between calls

Example:

strtok (C library string tokeniser) uses static data to maintain
the current position in the buffer

Seems to write a lot of lines of code to
achieve a given outcome

Tends to "own" code

Example:

* Does not like others to work on code they wrote
* "Resident expert" who always wants to be the one to write
the device drivers

Uses long multi-part conditions

Example:

Uses a complex conditional expression with multiple

operators, rather than nested conditions or intermediate
boolean variables

Is willing to discuss suggestions about
their code

Example:

* Asks for more information about suggested approach

* Debates pros and cons

* Makes a change or explains a clear rationale for the existing
approach

Makes data immutable whenever
relevant

Example:

const float Pl = 3.1415926535;

final String exitMessage = "Goodbye";

Prefers <a programming language>
and uses its idioms when coding in
other languages

Automates tasks

Example:

* Running of tests

* Building code

* Generating documentation
etc

Uses horizontal and vertical spacing to
align and separate code

Example:

* Alignment of related structures
* An empty line between two sections

10

Includes accurate details of symptoms
and how to reproduce the bug in their
bug reports

11

Keeps the flow of control easy to follow

Example:

* Avoids GOTO
* Uses break judiciously
* Avoids deeply nested code

12

Follows encapsulation principles

Example:

Data structures and the processes that operate on them are

in the same module, e.g. temperature data and the
associated methods for conversion between units

13

Tries to provide early outline
functionality that other team members
can use

Example:

Defines APIs and implements some minimum functionality
which will compile and run

14

Checks return values from function
calls which may return error codes

Example:

Checks return value when opening a file for write

15

Follows formal methods to the letter

16

Is good at helping others

Example:

* Willing to answer questions

* Patient with less experienced developers

* Explains how to fix a problem rather than taking the
keyboard and just fixing it

17

Is rigorous about deallocating
allocated resources

Example:

* malloc - free

* file open - file close
* new - delete

etc

18

Lets existing code constrain future
code

Example:

* Tries to make minimal changes to existing structure
* Is reluctant to refactor

19

Ignores build warnings

20

Accompanies each commit with a
suitably informative message

21

Includes code features that are not
currently needed

Example:

* Thinks it might be needed in future
* Finds it easier to implement it than check if required

22

Uses the idioms of the programming
language

Example:

* Lambda expressions in functional languages
* List comprehensions in Python

* Ternary operators in Java

* Use of the STL in C++

23

Writes long if... else if... else if... blocks

24

Includes brackets which are not
demanded by mathematical operator
precedence (BODMAS)

Example:

fahrenheit = (celsius * 9.0 / 5.0) + 32.0;

25

Logs it in the issue-tracking system

when knowingly making a sub-optimal

change

Example:

Quick and dirty change to get customer's system working

26

Is always willing to consider that the
bug may lie in their code

27

Commonly writes methods with 6 or
more parameters

28

Catches exceptions at a level of the
code where they cannot be resolved

29

Tries to leave a module a bit better
than when they checked it out

Example:

* Splits up an over-long function
* Improves a variable name

* Boards up "broken windows" if there isn't time to fix them

e.g. display a "not implemented" message

30

Rarely uses exceptions as part of a
program's normal flow

Example:

Assuming no unexpected events, the program could still run
correctly if all exception handlers were removed.

31

Is often the person who breaks the
build

Example:

* Missing files
* Missing steps
* Broken code
etc

32

Puts project goals over individual goals

Example:

Willing to give priority to helping fix a problem which is
holding others back but does not affect their own current task

33

Prioritises performance in the design
of their code

Example:

Code is optimised for speed over readability without any
benefit to overall system performance

34

Asks questions without giving context

Example:

I'm getting an exception. Do you know what the problem is?

35

Writes short, simple functions which
perform a single task

36

Uses assignments within expressions

Example:
a=3/(b=c+1)%d;
rather than

b=c+ 1;
3/b%d;

o)
I

37

Does not assume that a complex

problem necessarily results in complex

code

38

Fixes the symptoms without
discovering the root cause of a bug

39

Finds out whether functionality is
already available before writing their
own implementation

Example:

* Uses project libraries
* Uses language libraries
* Uses frameworks

40

Includes useful logging messages in
their code

Example:

* Errors, warnings and info are clearly distinguished
* Content of messages is informative and succinct
* Quantity of messages is sufficient but not verbose

41

Doesn't always update or add tests
when changing code

Example:

* Does not create tests for new code they write
* Does not update tests for code they modify/extend
* Does not add a new test to trap the bug they are fixing

42

Espouses "one true way" of doing
things

43

Includes brackets which are not
demanded by the language's operator
precedence

Example:

result = operand << (a + b);

if ((day == 31) && (month == 12) && (year == 1999))

44

Assumes that things which "can't
happen" won't

45

Practises good housekeeping

Example:

* Removes temporary debug statements
* Does not leave TODOs for others to deal with

46

Is willing to ask questions

Example:

* Asks whether there is existing code to do X

* Asks for advice on programming issues

* Asks for explanation of domain-specific concepts

* Asks for clarification of a requirement rather than making
assumptions about the correct interpretation

47

Codes using implementation terms
rather than domain terms

Example:
if (list.contains(user.getlid()))
rather than

if (user.isAuthorised())

48

Follows the DRY (Don't Repeat
Yourself) principle

Example:

* Avoids "copy-and-paste" coding
* Contributes code to project libraries when they notice
common use of functionality

49

Tends to work in isolation

Example:

* Checks in their work infrequently
* Rarely integrates their work with others

50

Makes APIs easy to use correctly

Example:

* Documents the API
* Designs APIs which seem natural and obvious, not for the
convenience of the underlying implementation

51

Tends to apply a favourite pattern
regardless of context

52

Uses code comments in ways that aid
understanding

Example:

* Explains the domain logic of the code
* Documents design decisions, e.g.
assumptions; alternatives discarded; trade-offs; workarounds
* Explains the task done by the following section of code,
* Updates existing comments to match changes to the code
* Does not obscure the structure of the code
* Comments only what the code cannot say

53

Chooses identifiers which are not
succinct, meaningful and distinct

Example:

* Spelling mistakes: String passwrod;

* Silent differences: oldPwd & oldpwd; userinput & user_input
* Meaningless: String s; float ex; int foo; doStuff();

* Misleading: getData() actually writes data to disk

* "Cute": int avadaKedavra; // exit code when system dies

* Superfluous: temperatureData vs temperature

* Verbose: performReconciliation() vs reconcile()

* Nouns for function names: conversion() vs convert()

54

